Feb 122016
 

I saw a question on Quora about humans and gravitational waves. How would a human experience an event like GW150914 up close?

Forget for a moment that those black holes likely carried nasty accretion disks and whatnot, and that the violent collision of matter outside the black holes’ respective event horizons probably produced deadly heat and radiation. Pretend that these are completely quiescent black holes, and thus the merger event produced only gravitational radiation.

A gravitational wave is like a passing tidal force. It squeezes you in one direction and stretches you in a perpendicular direction. If you are close enough to the source, you might feel this as a force. But the effect of gravitational waves is very weak. For your body to be stretched by one part in a thousand, you’d have to be about 15,000 kilometers from the coalescing black hole. At that distance, the gravitational acceleration would be more than 3.6 million g-s, which is rather unpleasant, to say the least. And even if you were in a freefalling orbit, there would be strong tidal forces, too, not enough to rip your body apart but certainly enough to make you feel very uncomfortable (about 0.25 g-forces over one meter.) So sensing a gravitational wave would be the least of your concerns.

But then… you’d not really be sensing it anyway. You would be hearing it.

Most of the gravitational wave power emitted by GW150914 was in the audio frequency range. A short chip rising in both pitch and amplitude. And the funny thing is… you would hear it, as the gravitational wave passed through your body, stretching every bit a little, including your eardrums.

The power output of GW150914 was stupendous. Its peak power was close to \(10^{56}\) watts, which exceeds the total power output of the entire visible universe by several orders of magnitude. So for a split second, GW150914 was by far the largest loudspeaker in the known universe.

And this is actually a better analogy than I initially thought. Because, arguably, those gravitational waves were a form of sound.

Now wait a cotton-picking minute you ask. Everybody knows that sounds don’t travel in space! Well… true to some extent. In empty space, there is indeed no medium that would carry the kind of mechanical disturbance that we call sound. But for gravitational waves, space is the medium. And in a very real sense, they are a form of mechanical disturbance, just like sound: they compress and stretch space (and time) as they pass by, just as a sound wave compresses and stretches the medium in which it travels.

But wait… isn’t it true that gravitational waves travel at the speed of light? Well, they do. But… so what? For cosmologists, this just means that spacetime might be represented as a “perfect fluid with a stiff equation of state”, i.e., its energy density and pressure would be equal.

Is this a legitimate thing to say? Maybe not, but I don’t know a reason off the top of my head why. It would be unusual, to be sure, but hey, we do ascribe effective equations of state to the cosmological constant and spatial curvature, so why not this? And I find it absolutely fascinating to think of the signal from GW150914 as a cosmic sound wave. Emitted by a speaker so loud that LIGO, our sensitive microphone, could detect it a whopping 1.3 billion light years away.

 Posted by at 11:26 pm
Feb 112016
 

If this discovery withstands the test of time, the plots will be iconic:

The plots depict an event that took place five months ago, on September 14, 2015, when the two observatories of the LIGO experiment simultaneously detected a signal typical of a black hole merger.

The event is attributed to a merger of two black holes, 36 and 29 solar masses in size, respectively, approximately 410 Mpc from the Earth. As the black holes approach each other, their relative velocity approaches the speed of light; after the merger, the resulting object settles down to a rotating Kerr black hole.

When I first heard rumors about this discovery, I was a bit skeptical; black holes of this size (~30 solar masses) have never been observed before. However, I did not realize just how enormous the distance is between us and this event. In such a gigantic volume, it is far less outlandish for such an oddball pair of two very, very massive (but not supermassive!) black holes to exist.

I also didn’t realize just how rapid this event was. I spoke with people previously who were studying the possibility of observing a signal, rising in amplitude and frequency, hours, days, perhaps even weeks before the event. But here, the entire event lasted no more than a quarter of a second. Bang! And something like three solar masses worth of mass-energy are emitted in the form of ripples in spacetime.

The paper is now accepted for publication and every indication is that the group’s work was meticulous. Still, there were some high profile failures recently (OPERA’s faster-than-light neutrinos, BICEP2’s CMB polarization due to gravitational waves) so, as they say, extraordinary claims require extraordinary evidence; let’s see if this detection is followed by more, let’s see what others have to say who reanalyze the data.

But if true, this means that the last great prediction of Einstein is now confirmed through direct observation (indirect observations have been around for about four decades, in the form of the change in the orbital period of close binary pulsars) and also, the last great observational confirmation of the standard model of fundamental physics (the standard model of particle physics plus gravity) is now “in the bag”, so to speak.

All in all, a memorable day.

 Posted by at 12:58 pm
Jan 292016
 

Eons ago, back when dinosaurs still roamed the Earth, George W. Bush was still a first-term president, there were only five Star Wars films and Java applets were still cool, I created an applet that showed what Mars would look like if its surface was covered by oceans.

I liked what I did so I added the capability to use other data sets, including data sets for the Earth.

The applet is worthless now, or almost so. Java applets are no longer supported in Google’s Chrome browser. They were never really supported on mobile platforms. Even in browsers that do still support Java, the user has to go through hoops and add my domain as a security exception (not recommended) to allow my unsigned applet to run; all this a result of vain attempts to address the security risks inherent in Java and its implementations.

Anyhow, the applet still works if you can run it. And this is what the Earth looks like today:

Someone recently asked what our planet would look like if it was devoid of oceans. If sea levels were 5000 meters below the present value, the planet would still have a shallow ocean in place of the Pacific. Otherwise, though, it would be mostly dry land with only some inland seas where the Atlantic and the Indian oceans used to be.  It would be possible to walk from pole to pole without wetting your feet; however, you might get a tad thirsty along the way, and there’d not be much rain either.

Decrease ocean levels by another 1000 meters to 6000 below present sea levels, and the last remaining ocean is gone:

Finally, at 7000 meters, the only open water that remains would be in places of the deepest ocean trenches. (Mind you, even then, some of these seas would still be up to four kilometers deep.)

I was also asked what things would look like if the seas rose. There is a surprising amount of change to coast lines by an increase of a mere 50 meters:

Florida is gone; Western Europe looks noticeably different. Increase the sea level rise to 200 meters, and now the change is rather more dramatic:

earth+0200

India is now an island or almost so (there may be some land bridges connecting it to the Asian continent that are too narrow to be visible at this map’s resolution). Much of Europe, Russia, Australia, South America, and the eastern parts of North America, gone.

Finally, at 1000 meters, only mountain ranges remain:

With this little dry land left, there is not much in the way of storms; like Jupiter with its Great Red Spot, the Earth might also develop long-lived storms that circumnavigate the planet many times before dissipating.

 Posted by at 3:30 pm
Jan 282016
 

If you are not following particle physics news or blog sites, you might have missed the big excitement last month when it was announced that the Large Hadron Collider may have observed a new particle with a mass of 750 GeV (roughly 800 times as heavy as a hydrogen atom).

Within hours of the announcement, a flurry of papers began to appear on the manuscript archive, arxiv.org. To date, probably at least 200 papers are there, offering a variety of explanations of this new observation (and incidentally, demonstrating just hungry the theoretical community has become for new data.)

Most of these papers are almost certainly wrong. Indeed, there is a chance that all of them are wrong, on account of the possibility that there is no 750 GeV resonance in the first place.

I am looking at two recent papers. One, by Buckley, discusses what we can (or cannot) learn from the data that have been collected so far. Buckley cautions researchers not to divine more from the data than what it actually reveals. He also remarks on the fact that the observational results of the two main detectors of the LHC, ATLAS and CMS, are somewhat in tension with one another.

Best fit regions (1 and 2σ) of a spin-0 mediator decaying to diphotons, as a function of mediator mass and 13 TeV cross section, assuming mediator couplings to gluons and narrow mediator width. Red regions are the 1 and 2σ best-fit regions for the Atlas13 data, blue is the fit to Cms13 data. The combined best fit for both Atlas13 and Cms13 (Combo13) are the regions outlined in black dashed lines. The best-fit signal combination of all four data sets (Combo) is the black solid regions

From Fig. 2: Best fit regions (1 and 2σ) of a spin-0 mediator decaying to diphotons, as a function of mediator mass and 13 TeV cross section, assuming mediator couplings to gluons and narrow mediator width. Red regions are the 1 and 2σ best-fit regions for the Atlas13 data, blue is the fit to Cms13 data. The combined best fit for both Atlas13 and Cms13 (Combo13) are the regions outlined in black dashed lines. The best-fit signal combination of all four data sets (Combo) is the black solid regions.

 

The other paper, by Davis et al., is more worrisome. It questions the dependence of the presumed discovery on a crucial part of the analysis: the computation or simulation of background events. The types of reactions that the LHC detects happen all the time when protons collide; a new particle is discerned when it produce some excess events over that background. Therefore, in order to tell if there is indeed a new particle, precise knowledge of the background is of paramount importance. Yet Davis and his coauthors point out that the background used in the LHC data analysis is by no means an unambiguous, unique choice and that when they choose another, seemingly even more reasonable background, the statistical significance of the 750 GeV bump is greatly diminished.

I guess we will know more in a few months when the LHC is restarted and more data are collected. It also remains to be seen if the LHC can reproduce the Higgs discovery at its current, 13 TeV operating energy; if it does not, if the Higgs discovery turns out to be a statistical fluke, we may witness one of the biggest embarrassments in the modern history of particle physics.

 Posted by at 6:25 pm
Jan 282016
 

There is an interesting paper out there by Guerreiro and Monteiro, published a few months ago in Physics Letters A. It is about evaporating black holes. The author’s main assertion is that because of Hawking radiation, not even an infalling ray of light can ever cross the event horizon: rather, the event horizon evaporates faster than the light ray could reach it, neatly solving a bunch of issues and paradoxes associated with black holes and quantum physics, such as the problems with unitarity and information loss.

I find this idea intriguing and very appealing to my intuition about black holes. I just read the paper and I cannot spot any obvious errors. I am left wondering if the authors appreciated that the Vaydia metric is not a vacuum metric (indeed, it is easy to prove that a spherically symmetric time-dependent solution of Einstein’s field equations cannot be a vacuum solution; there will always be a radial momentum field, carrying matter out of or into the black hole) but it has no bearing on their conclusions I believe.

Now it’s a good question why I am only seeing a paper that is of great interest to me more than six months after its publication. The reason is that although the paper appeared in a pre-eminent journal, it was rejected by the manuscript archive, arxiv.org. This is deeply troubling. The paper is certainly not obviously wrong. It is not plagiarized. Its topic is entirely appropriate to the arXiv subject field to which it was submitted. It is not a duplicate, nor did the authors previously abuse arXiv’s submission system. Yet this paper was rejected. And the most troubling bit is that we do not know why; the rejection policy of arXiv is not only arbitrary, it seems, but also lacks transparency.

This manuscript archive is immensely valuable to researchers. It is one of the greatest inventions of the Internet era. I feel nothing but gratitude towards the people who established and maintain this repository. Nonetheless, I do not believe that such an opaque and seemingly arbitrary rejection policy is justifiable. I hope that this will be remedied and that arXiv’s administrators will take the necessary steps to ensure that in the future, rejections are based on sound criteria and the decisions are transparently explained.

 Posted by at 5:51 pm
Jan 282016
 

This is NASA’s week of tragedy.

Today is the 30th anniversary of the loss of the space shuttle Challenger with seven souls on board. One of my notable memories of this event is that it was the first time that I recall that the national broadcaster in then still communist Hungary didn’t dub a speech of Ronald Reagan. I think the speech was actually carried live (it took place at 5 PM EST, which would have been 11 o’clock at night in Hungary; late, but not too late) and it may have been subtitled, or perhaps not translated at all, I cannot remember. For me, it was also the first disaster that I was able to record on my VCR; for days afterwards, my friends and I replayed and replayed the broadcasts, trying to make sense of what we saw. (Sadly, those tapes are long lost. My VCR was a Grundig 2000 unit using a long-forgotten standard. After I left Hungary, I believe my parents used it for a while, but what ultimately happened to it and my cassettes, I do not know.)

Yesterday marked the 49th anniversary of the Apollo 1 fire that claimed the lives of three astronauts who were hoping to be the first to travel to the Moon. Instead, they ended up burned to a crisp in the capsule’s pure oxygen atmosphere, with no chance of escape. Arguably though, their tragedy resulted in much needed changes to the Apollo program that made it possible for Apollo 11 to complete its historic journey successfully.

And finally, in four days it will be exactly 13 years since the tragedy of Columbia, which disintegrated in the upper atmosphere at the conclusion of a successful 16-day mission. I remember that Saturday all too well. I was working, but I also had CNN running on one of my monitors. “Columbia, Houston, comm check” I heard many times and I knew something already that those in the mission center didn’t: CNN was already showing the multiple contrails over Texas, which could only mean one thing: a disintegrating vehicle. And then came the words, “Lock the doors”, and we knew for sure that it was all over.

Of course the US space program was not the only one with losses. The Soviet program had its own share of tragedies, including the loss of Vladimir Komarov (Soyuz 1 crash, April 24, 1967), three astronauts on boar Soyuz 11 (depressurization after undocking while in space, June 30, 1971), and several deaths on ground during training. But unlike the American cases, these Soviet deaths were not all clustered around the same date.

 Posted by at 3:35 pm
Jan 272016
 

I was never a fan of conspiracy theories. Most popular conspiracies are highly improbable: maintaining complete secrecy would require thousands of people to cooperate for many years.

But just how improbably are conspiracies, really? Well, now there is a quantitative estimate, thanks a paper by David Robert Grimes. Grimes used several specific, high-profile cases of actual conspiracies to estimate the likelihood that a conspiracy is revealed by a participant. He found that while the probability that any individual participant betrays the conspiracy may be quite small, the likelihood that the conspiracy is revealed over time nonetheless approaches unity over the years, as demonstrated by the following diagram:

The parameter p in these curves represents the probability that any given participant will break his silence in a given year.

So then, this is it… by Grimes’s calculations, if the Moon landing had been a hoax or if similarly, vaccination or climate change were both just vast conspiracies, these would all have been revealed with a very high likelihood in the span of no more than a few years.

None of this will deter conspiracy theorists, I am sure. If all other arguments fail, they’ll just declare Grimes himself to be a member of the conspiracy, too. Well, for all you know, I may also be an agent of the secret cabal, using my blog to lure the unsuspecting into believing that man walked on the Moon, that vaccines save lives or that anthropogenic climate change is actually happening…

 Posted by at 5:28 pm
Jan 062016
 

I’ve become a calendar boy.

Or to be more precise, an illustration in a paper that my friend and colleague, Eniko Madarassy and I published together early last year in Physical Review D found its way to the 2016 calendar of the American Physical Society.

aps-2016-78

Now if only it came with perks, such as getting a discount on my APS membership or something… but no, in fact they didn’t even bother to tell us that this was going to happen, I only found out today when I opened my mailbox and found the calendar inside. Oh well… It was still a nice surprise, so I am not complaining.

 Posted by at 2:35 pm
Dec 302015
 

It is nice to have a paper accepted on the penultimate day of the year by Physical Review D.

Our paper in question, General relativistic observables for the ACES experiment, is about the Atomic Clock Ensemble in Space (ACES) experiment that will be installed on board the International Space Station (ISS) next year. This experiment places highly accurate atomic clocks in the microgravity environment of the ISS.

How accurate these clocks can be depends, in part, on knowledge of the general relativistic environment in which these clocks will live. This will be determined by the trajectory of the ISS as it travels through the complex gravitational field of the Earth, while being also subject to non-gravitational forces, most notably atmospheric drag and solar radiation pressure.

What complicates the analysis is that the ACES clocks will not be located at the ISS center-of-mass; therefore, as the ISS is quite a large object subject to tidal accelerations, the trajectory of the ACES clocks is non-inertial.

To analyze the problem, we looked at coordinate transformation rules between the various coordinate systems involved: geocentric and terrestrial coordinates, coordinates centered on the ISS center-of-mass, and coordinates centered on ACES.

One of our main conclusions is that in order for the clock to be fully utilized, the orbit of the ISS must be known at an accuracy of 2 meters or less. This requirement arises if we assume that the orbits are known a priori, and that the clock data are used for science investigations only. If instead, the clock data are used to refine the station orbit, the accuracy requirement is less stringent, but the value of the clock data for scientific analysis is also potentially compromised.

It was an enjoyable paper to work on, and it is nice to end the year on a high note. As we received the acceptance notice earlier today, we were able to put the accepted version on arXiv just in time for it to appear on the very last day of the year, bearing the date December 31, 2015.

Happy New Year!

 Posted by at 8:57 pm
Dec 242015
 

It has become a habit of mine. On Christmas Eve Day, I like to offer my best wishes to all my friends, members of my extended family, and indeed to all good people on this Earth with the words of the first three human beings in history who left our planet and entered orbit around another celestial body: The astronauts of Apollo 8, who accomplished their historic mission at the end of one of the most tumultuous years since World War 2, 1968.

And as they emerged from the dark side of the Moon and reestablished radio contact with the Earth, they greeted their fellow humans by quoting from the Book of Genesis. They then finished their broadcast with these unforgettable words: “And from the crew of Apollo 8, we close with good night, good luck, a Merry Christmas and God bless all of you – all of you on the good Earth.

 Posted by at 5:00 pm
Dec 242015
 

Here is the Weather Network’s forecast for today that was made a couple of days ago:

No, they weren’t lying. Here is what my thermometer showed just a few minutes ago:

20151224_113346

And it’s already less than what it was; the temperature dropped from 16.4 to 16.2 degrees Centigrade in the past half hour.

May not be impressive for a place like Dubai or Mumbai but lest we forget, I live in Ottawa, supposedly the second coldest capital city on Earth.

Needless to say, we are not going to have a white Christmas this year.

 Posted by at 11:42 am
Dec 162015
 

The reason for my trip to China was to participate in the 3rd workshop on the TianQin mission.

TianQin is a proposed space-borne gravitational wave detector. It is described in our paper, which was recently accepted for publication in Classical and Quantum Gravity. The name, as typical for China, is poetic: it means a zither or harp in space or perhaps (sounds much nicer in English) a celestial harp. A harp that resonates in response to continuous gravitational waves that come from binary pulsars.

Gravitational waves are notoriously hard to detect because they are extremely weak. To date, we only have indirect confirmation of gravitational waves: closely orbiting binary pulsars are known to exhibit orbital decay that is consistent with the predictions of Einstein’s gravity.

Gravitational radiation is quadrupole radiation. It means basically that it simultaneously squeezes spacetime in one direction and stretches it in a perpendicular direction. This leads to the preferred method of detection: two perpendicular laser beams set to interfere with each other. As a gravitational wave passes through, a phase shift occurs as one beam travels a slightly longer, the other a slightly shorter distance. This phase shift manifests itself as an interference pattern, which can be detected.

But detection is much harder in practice than it sounds. Gravitational waves are not only very weak, they are also typically very low in frequency. Strong gravitational waves (relatively speaking) are produced by binaries such as HM Cancri (aka. RX J0806.3+1527) but even such an extreme binary system has an orbital period of several minutes. The corresponding gravitational wave frequency is measured in millihertz, and the wavelength, in tens or hundreds of millions of kilometers.

There is one exception: inspiraling neutron star or black hole binary systems at the very end of their lives. These could produce detectable gravitational waves with frequencies up to even a kilohertz or so, but these are random, transient events. Nonetheless, there are terrestrial detectors such as LIGO (Laser Interferometer Gravitational-wave Observatory) that are designed to detect such events, and the rumor I heard is that it may have already happened. Or not… let’s wait for the announcement.

But the continuous waves from close binaries require a detector comparable in size to the wavelength of their gravitational radiation. In short, an interferometer in which the laser beams can travel at least a few hundred thousand kilometers, preferably more. Which means that the interferometer must be in space.

This is the idea behind LISA, the Laser Interferometer Space Antenna project. Its current incarnation is eLISA (the “e” stands for “evolved”), a proposed European Space Agency mission, a precursor of which, LISA Pathfinder, was launched just a few days ago. Nonetheless, eLISA’s future remains uncertain.

Enter the Chinese, with TianQin. Whereas eLISA’s configuration of three spacecraft is designed to be in deep space orbiting one of the Earth-Sun Lagrange points with inteferometer arm lengths as long as 1.5 million kilometers, TianQin’s more modest proposal calls for a geocentric configuration, with arm lengths of 150,000 km or so. This means reduced sensitivity, of course, and the geocentric orbit introduces unique challenges. Nonetheless, our colleagues believe that it is fundamentally feasible for TianQin to detect gravitational waves from a known source with sufficient certainty. In other words, the primary mission objective of TianQin is to serve as a gravitational wave detector, confirming the existence of continuous waves emitted by a known binary system, as opposed to being an observatory, usable to find previously unknown sources of gravitational radiation. Detection is always easier: in radio technology, for instance, a lock-in amplifier can be used to detect the presence of a carrier wave even when it is far too weak to carry any useful information.

Theoretical sensitivity curve of the proposed TianQin mission.
Theoretical sensitivity curve of the proposed TianQin mission.

The challenges of TianQin are numerous, but here are a few main ones:

  • First, precisely controlling the orbits of shielded, drag-free test masses such that their acceleration due to nongravitational forces is less than \(10^{-15}~{\rm m}/{\rm s}^2\).
  • Second, precisely controlling the optical path such that no unmodeled effects (e.g., thermal expansion due to solar heating) contribute unmodeled changes more than a picometer in length.
  • Third, implementing time-delay interferometry (TDI), which is necessary in order to be able to compare the phases of laser signals that traveled different lengths, and do so with sufficient timing accuracy to minimize the contributions due to fluctuations in laser frequency.

Indeed, some of the accuracy requirements of TianQin exceed those of eLISA. This is a tall order for any space organization, and China is no exception. Still, as they say, where there is a will…

Unequal-arm Michelson interferometer
Unequal-arm Michelson interferometer.

One thing that complicates matters is that there are legal barriers when it comes to cooperation with China. In the United States there are strong legal restrictions preventing NASA and researchers at NASA from cooperating with Chinese citizens and Chinese enterprises. (Thankfully, Canada is a little more open-minded in this regard.) Then there is the export control regime: Technologies that can be utilized to navigate ballistic missiles, to offer satellite-based navigation on the ground, and to perform remote sensing may be categorized as munitions and fall under export control restrictions in North America, with China specifically listed as a proscribed country.

The know-how (and software) that would be used to navigate the TianQin constellation is arguably subject to such restrictions at least on the first two counts, but possibly even the third: a precision interferometer in orbit can be used for gravitiational remote sensing, as it has been amply demonstrated by GRACE (Gravity Recovery And Climate Experiment), which was orbiting the Earth, and GRAIL (Gravity Recovery And Interior Laboratory) in lunar orbit. Then there is the Chinese side of things: precision navigation requires detailed information about the capabilities of tracking stations in China, which may be, for all I know, state secrets.

While these issues make things a little tricky for Western researchers, TianQin nonetheless has a chance of becoming a milestone experiment. I sincerely hope that they succeed. And I certainly feel honored, having been invited to take part in this workshop.

 Posted by at 5:32 pm
Dec 082015
 

Hello, Guangzhou. And hello world, from Guangzhou. Here is what I see from my hotel window today:

It is a very interesting place. Today, I had a bit of a walk not just along the main urban avenues, full of neon and LED signs and modern high-tech stores, but also in some of the back alleys, complete with street vendors, stray dogs, and 60-70 year old crumbling buildings, some abandoned. In short… a real city with a real history.

For what it’s worth, I am here on account of a conference about a planned space-borne gravitational wave detector called TianQin.

 Posted by at 2:31 am
Dec 032015
 

It has been in the news recently that the baboon exhibit at the Toronto Zoo had to close temporarily. The reason: Following the death of the matriarch, there was a power struggle.

The reason why I find this fascinating is that these baboons weren’t fighting for food. They were not fighting for sex. They were not fighting for a more cozy sleeping place or anything else tangible.

No… they were fighting for power.

That such an abstract concept not only exists in the animal world but may even prompt a vicious fight might upset those who maintain illusions about the noble animal world. But then, perhaps the animal world is not that different from the world of humans.

We all came from the same place, after all.

The next time a bellicose politician, ruler or warlord makes a threat, brandishing fancy weapons of war, in some vainglorious quest for power, just think of one word: baboon.

 Posted by at 6:28 pm
Nov 122015
 

I almost forgot: The International Space Station just celebrated fifteen years of continuous occupation.

Continuous occupation by humans, that is. I wonder if they’ve had the same ship’s cat all this time.

 Posted by at 10:01 pm
Oct 282015
 

So here I am, listening to, not really watching CBC NewsWorld, when they briefly cut to a live picture from the International Space Station where a spacewalk is underway, and I hear this:

capture_20151028_081942

Yup, that’s what the anchorwoman said: Scott Kelly has two pair [sic!] of legs.

You’d think that such a scary, dramatic mutation would have received more coverage already. But what do we know? Must be another liberal mainstream media conspiracy, hiding the facts from people.

 Posted by at 8:28 am
Oct 082015
 

I received a very polite invitation to be an “academic editor” to a scholarly journal.

Sounds good, right? To be sure, I am promised no monetary compensation, indeed, I’d still have to pay (albeit at a discount) to have my papers published in the same journal (not that I have any plans to do so). Still… it’s an honor, right?

Too bad it’s one of the many predatory journals of a predatory publisher. A journal that publishes just about anything so long as the author pays the (often hefty) publication fee. There are now thousands of such journals around the world, maintaining a parasitic existence, leeching off both crackpots and third-world researchers who don’t know any better and try to pad their resumes with a seemingly legitimate publication record.

So why am I ever so slightly hesitant? Well… on two (maybe three?) occasions in recent weeks, I received requests from the same journal to referee papers. I indicated that I was not available, but also that, judging by the abstracts that were shared with me, those papers should have been rejected by the editor and never sent out to referees in the first place.

And now here I am, being asked to work as a volunteer editor for the same journal. Should I accept it, in the hope that I would be given the editorial autonomy to reject papers up front, in the hope of improving the journal’s standards?

Probably a bad idea.

 Posted by at 9:35 pm
Oct 072015
 

It’s time for me to write about physics again. I have a splendid reason: one of the recipients of this year’s physics Nobel is from Kingston, Ontario, which is practically in Ottawa’s backyard. He is recognized for his contribution to the discovery of neutrino oscillations. So I thought I’d write about neutrino oscillations a little.

Without getting into too much detail, the standard way of describing a theory of quantum fields is by writing down the so-called Lagrangian density of the theory. This Lagrangian density represents the kinetic and potential energies of the system, including so-called “mass terms” for fields that are massive. (Which, in quantum field theory, is the same as saying that the particles we associate with the unit oscillations of these fields have a specific mass.)

Now most massive particles in the Standard Model acquire their masses by interacting with the celebrated Higgs field in various ways. Not neutrinos though; indeed, until the mid 1990s or so, neutrinos were believed to be massless.

But then, neutrino oscillations were discovered and the physics community began to accept that neutrinos may be massive after all.

So what is this about oscillations? Neutrinos are somewhat complicated things, but I can demonstrate the concept using two hypothetical “scalar” particles (doesn’t matter what they are; the point is, their math is simpler than that of neutrinos.) So let’s have a scalar particle named \(\phi\). Let’s suppose it has a mass, \(\mu\). The mass term in the Lagrangian would actually be in the form, \(\frac{1}{2}\mu\phi^2\).

Now let’s have another scalar particle, \(\psi\), with mass \(\rho\). This means another mass term in the Lagrangian: \(\frac{1}{2}\rho\psi^2\).

But now I want to be clever and combine these two particles into a two-element abstract vector, a “doublet”. Then, using the laws of matrix multiplication, I could write the mass term as

$$\frac{1}{2}\begin{pmatrix}\phi&\psi\end{pmatrix}\cdot\begin{pmatrix}\mu&0\\0&\rho\end{pmatrix}\cdot\begin{pmatrix}\phi\\\psi\end{pmatrix}=\frac{1}{2}\mu\phi^2+\frac{1}{2}\rho\psi^2.$$

Clever, huh?

But now… let us suppose that there is also an interaction between the two fields. In the Lagrangian, this interaction would be represented by a term such as \(\epsilon\phi\psi\). Putting \(\epsilon\) into the “0” slots of the matrix, we get

$$\frac{1}{2}\begin{pmatrix}\phi&\psi\end{pmatrix}\cdot\begin{pmatrix}\mu&\epsilon\\\epsilon&\rho\end{pmatrix}\cdot\begin{pmatrix}\phi\\\psi\end{pmatrix}=\frac{1}{2}\mu\phi^2+\frac{1}{2}\rho\psi^2+\epsilon\phi\psi.$$

And here is where things get really interesting. That is because we can re-express this new matrix using a combination of a diagonal matrix and a rotation matrix (and its transpose):

$$\begin{pmatrix}\mu&\epsilon\\\epsilon&\rho\end{pmatrix}=\begin{pmatrix}\cos\theta/2&\sin\theta/2\\-\sin\theta/2&\cos\theta/2\end{pmatrix}\cdot\begin{pmatrix}\hat\mu&0\\0&\hat\rho\end{pmatrix}\cdot\begin{pmatrix}\cos\theta/2&-\sin\theta/2\\\sin\theta/2&\cos\theta/2\end{pmatrix},$$

which is equivalent to

$$\begin{pmatrix}\hat\mu&0\\0&\hat\rho\end{pmatrix}=\begin{pmatrix}\cos\theta/2&-\sin\theta/2\\\sin\theta/2&\cos\theta/2\end{pmatrix}\cdot\begin{pmatrix}\mu&\epsilon\\\epsilon&\rho\end{pmatrix}\cdot\begin{pmatrix}\cos\theta/2&\sin\theta/2\\-\sin\theta/2&\cos\theta/2\end{pmatrix},$$

or

$$\begin{pmatrix}\hat\mu&0\\0&\hat\rho\end{pmatrix}=\frac{1}{2}\begin{pmatrix}\mu+\rho+(\mu-\rho)\cos\theta-2\epsilon\sin\theta&(\rho-\mu)\sin\theta-2\epsilon\cos\theta\\(\rho-\mu)\sin\theta-2\epsilon\cos\theta&\mu+\rho+(\rho-\mu)\cos\theta+2\epsilon\sin\theta\end{pmatrix},$$

which tells us that \(\tan\theta=2\epsilon/(\rho-\mu)\), which works so long as \(\rho\ne\mu\).

Now why is this interesting? Because we can now write

\begin{align}\frac{1}{2}&\begin{pmatrix}\phi&\psi\end{pmatrix}\cdot\begin{pmatrix}\mu&\epsilon\\\epsilon&\rho\end{pmatrix}\cdot\begin{pmatrix}\phi\\\psi\end{pmatrix}\\
&{}=\frac{1}{2}\begin{pmatrix}\phi&\psi\end{pmatrix}\cdot\begin{pmatrix}\cos\theta/2&\sin\theta/2\\-\sin\theta/2&\cos\theta/2\end{pmatrix}\cdot\begin{pmatrix}\hat\mu&0\\0&\hat\rho\end{pmatrix}\cdot\begin{pmatrix}\cos\theta/2&-\sin\theta/2\\\sin\theta/2&\cos\theta/2\end{pmatrix}\cdot\begin{pmatrix}\phi\\\psi\end{pmatrix}\\
&{}=\frac{1}{2}\begin{pmatrix}\hat\phi&\hat\psi\end{pmatrix}\cdot\begin{pmatrix}\hat\mu&0\\0&\hat\rho\end{pmatrix}\cdot\begin{pmatrix}\hat\phi\\\hat\psi\end{pmatrix}.\end{align}

What just happened, you ask? Well, we just rotated the abstract vector \((\phi,\psi)\) by the angle \(\theta/2\), and as a result, diagonalized the expression. Which is to say that whereas previously, we had two interacting fields \(\phi\) and \(\psi\) with masses \(\mu\) and \(\rho\), we now re-expressed the same physics using the two non-interacting fields \(\hat\phi\) and \(\hat\psi\) with masses \(\hat\mu\) and \(\hat\rho\).

So what is actually taking place here? Suppose that the doublet \((\phi,\psi)\) interacts with some other field, allowing us to measure the flavor of an excitation (particle) as being either a \(\phi\) or a \(\psi\). So far, so good.

However, when we attempt to measure the mass of the doublet, we will not measure \(\mu\) or \(\rho\), because the two states interact. Instead, we will measure \(\hat\mu\) or \(\hat\rho\), corresponding to the states \(\hat\phi\) or \(\hat\psi\), respectively: that is, one of the mass eigenstates.

Which means that if we first perform a flavor measurement, forcing the particle to be in either the \(\phi\) or the \(\psi\) state, followed by a mass measurement, there will be a nonzero probability of finding it in either the \(\hat\phi\) or the \(\hat\psi\) state, with corresponding masses \(\hat\mu\) or \(\hat\rho\). Conversely, if we first perform a mass measurement, the particle will be either in the \(\hat\phi\) or the \(\hat\psi\) state; a subsequent flavor measurement, therefore, may give either \(\phi\) or \(\psi\) with some probability.

In short, the flavor and mass eigenstates do not coincide.

This is more or less how neutrino oscillations work (again, omitting a lot of important details), except things get a bit more complicated, as neutrinos are fermions, not scalars, and the number of flavors is three, not two. But the basic principle remains the same.

This is a unique feature of neutrinos, by the way. Other particles, e.g., charged leptons, do not have mass eigenstates that are distinct from their flavor eigenstates. The mechanism that gives them masses is also different: instead of a self-interaction in the form of a mass matrix, charged leptons (as well as quarks) obtain their masses by interacting with the Higgs field. But that is a story for another day.

 Posted by at 9:47 pm
Sep 292015
 

In Douglas Adams’s immortal Hitchiker’s Guide to the Galaxy, someone builds a device called the Total Perspective Vortex. This device invariably drives people insane by simply showing them exactly how insignificant they are with respect to this humongous universe.

The Total Perspective Vortex may not exist in reality, but here is the next best thing: A model of the solar system, drawn to scale.

moonpixel

The scale of this page is set so that the Moon occupies one screen pixel. As a result, we have an image that is almost a thousand times wider than my HD computer monitor. It takes a while to scroll through it.

Thankfully, there is an animation option that not only scrolls through the image automatically, but does so at the fastest speed possible, the speed of light.

Oh, did I mention that it still takes well over five hours to scroll all the way to Pluto?

By the way, the nearest star, our closest stellar neighbor is roughly 2,000 times as far from us as Pluto.

Or, once again in the words of Douglas Adams, “Space is big. Really big. You just won’t believe how vastly, hugely, mind-bogglingly big it is. I mean, you may think it’s a long way down the road to the chemist, but that’s just peanuts to space.”

 Posted by at 12:41 pm