Feb 222022
 

This is the last moment until well into the 22nd century that the current time and date in UTC can be expressed using only two digits.

I can only hope that this date will not be memorable for another reason, you know, something like the start of WW3?

 Posted by at 5:22 pm
Feb 202022
 

Recently, I came across an interesting article by a Jonathan Jarry from McGill University, suggesting that the much heralded Dunning-Kruger effect is not real, but a data analysis artifact.

Here is the famous Dunning-Kruger graph:

The usual interpretation is that those in the bottom quartile significantly overestimated their ability. This is the famous Dunning-Kruger effect.

But, Jarry says, a completely random model yields a very similar-looking graph:

and thus concludes that the Dunning-Kruger effect may not be real after all.

But wait. When we compare the two graphs, there are qualitative similarities but also striking differences. Notice how, in the second graph, the two curves intersect each other at roughly the halfway point. That makes perfectly good sense: If the model is that people in all four quartiles fail to assess their abilities accurately at the same rate, those in the bottom quartile will overestimate their ability just as much as those in the top quartile underestimate theirs. This would be the effect of random noise.

However, when we look at the original Dunning-Kruger curve, this is not what we see. Those in the bottom quartile overestimate their ability to a much greater extent than those in the top quartile underestimate theirs. Even in the 3rd quartile, people tended to overestimate their abilities, though only slightly, by the same amount as those in the top quartile underestimated theirs. So what the original Dunning-Kruger curve actually appears to show is a more ore less random spread in the 3rd and top quartiles, but significant bias in the bottom and 2nd quartiles, consistent with the notion that people in these quartiles overestimate their abilities.

Of course it would be nice to see a proper statistical analysis that also evaluates the statistical significance of the finding, but a simple, qualitative comparison of the two plots seems to show is that the Dunning-Kruger effect is real, after all.

 Posted by at 2:18 am
Feb 192022
 

The 64-antenna radio telescope complex, MeerKAT, is South Africa’s contribution to the Square Kilometer Array, an international project under development to create an unprecedented radio astronomy facility.

While the SKA project is still in its infancy, MeerKAT is fully functional, and it just delivered the most detailed, most astonishing images yet of the central region of our own Milky Way. Here is, for instance, an image of the Sagittarius A region that also hosts the Milky Way’s supermassive black hole, Sgr A*:

The filamentary structure that is seen in this image is apparently poorly understood. As for the scale of this image, notice that it is marked in arc seconds; at the estimated distance to Sgr A, one arc second translates into roughly 1/8th of a light year, so the image presented here is roughly a 15 by 15 light year area.

 Posted by at 5:04 pm
Dec 242021
 

Although we are not religious, we celebrate Christmas.

And I still cannot think of a better way to celebrate Christmas than with the words of the astronauts of Apollo 8, and the sense of awe they felt when they became the first human beings ever in the history of our species to be completely cut off from Mother Earth, when their spaceship disappeared behind the Moon.

Earthrise from Apollo 8

Re-emerging, they read passages from the Book of Genesis to their audience, with Frank Borman concluding with the words:

[G]ood night, good luck, a Merry Christmas – and God bless all of you, all of you on the good Earth.

To me, this is the most beautiful Christmas message ever.

 Posted by at 2:38 am
Dec 202021
 

Though he passed away in September, I only learned about it tonight: Thanu Padmanabhan, renowned Indian theoretical physicist, is no longer with us. He was only 64 when he passed away, a result of a heart attack according to Wikipedia.

I never met Padmanabhan but I have several of his books on my bookshelf, including Structure Formation in the Universe and his more recent textbook Gravitation. I am also familiar with many of his papers.

I learned about his death just moments ago as I came across a paper by him on arXiv, carrying this comment: “Prof. T. Padmanabhan has passed away on 17th September, 2021, while this paper was under review in a journal.”

What an incredible loss. The brilliant flame of his intellect, extinguished. I am deeply saddened.

A tribute article about his life was published on arXiv back in October, but unfortunately was not cross-listed to gr-qc, and thus it escaped my attention until now.

 Posted by at 2:15 am
Oct 242021
 

Thanks to streaming services, I occasionally stumble upon films and television series from foreign lands that otherwise I’d not even know about. And no, I don’t mean Squid Game, that explosively popular Korean series: I only watched the opening few minutes of the first episode so far, and I don’t yet know if it is my cup of tea. Rather, this time around it is a Russian movie that I came across on Amazon Prime: a 2017 film titled Salyut-7.

Salyut-7 was a Soviet space station. In 1985, the space station was dead, without power. The Russians launched a daring rescue mission, Soyuz-T13, which was not only able to dock with the derelict station but also able to revive and repair it.

Consistent with Soviet era secrecy, we knew very little about this mission and didn’t appreciate its significance back then.

The movie itself combined the actual story of the Soyuz-T13 mission with other events, such as the fire on board the Mir space station 12 years later or a nonsensical fictitious mission by the space shuttle Challenger to “steal” the station, for dramatic effect. In that, I think they did a disservice to the cosmonauts who pulled off this repair: perhaps less spectacular in terms of visual effects, what they accomplished was no less significant.

But otherwise, I found the movie fun to watch, very well done, with top notch special effects and (insofar as my inexpert eye can tell) excellent acting and directing. I enjoyed the movie. And its faults notwithstanding, I think it offers a worthy reminder that the USSR’s space program brought enormous value to all of humanity. It saddens me deeply when I think of how much of it went to waste in the turbulent years following the breakup of the USSR.

 Posted by at 12:11 pm
Oct 202021
 

Earlier today, I noticed something really strange. A lamp was radiating darkness. Or so it appeared.

Of course there was a mundane explanation. Now that the Sun is lower in the sky and the linden tree in front of our kitchen lost many of its leaves already, intense sunlight was reflecting off the hardwood floor in our dining area.

Still, it was an uncanny sight.

 Posted by at 11:27 pm
Sep 302021
 

I have had it up to my eyeballs with misinformation about vaccines, mRNA vaccines in particular. People who up until 2020 could not tell the difference between acronyms like “RNA” and “WTF” suddenly became experts on molecular biology, capable of evaluating the professional literature and arriving at profound judgments, telling us that the vaccines are “fake” and such, or worse yet, they amount to “gene therapy”.

With all due respect, I first encountered the acronym “mRNA” (or its Hungarian equivalent, mRNS) not in 2020, not in 2019, but in 1980 or 81, from a Hungarian translation of Watson’s book on molecular biology of the gene.

Now granted, even if I had read that book cover-to-cover (I didn’t) it would not make me an expert on molecular biology. But I knew enough for the expression “mRNA vaccine” to make sense to me right away when it first showed up in news reports. In short, I know enough to spot the bullshit. Such as all that anti-vaccine scaremongering that has become ever so popular on the Interwebs lately.

Something similar happened 20 years ago, in the wake of 9/11. Many folks, especially Americans, who previously couldn’t tell Mohammed the prophet from Mohammed Ali, and who have never been in the same room with a textbook on comparative religion previously, suddenly became experts on Islam, making grand pronouncements about it being the religion of terror and all that. I first read a textbook on comparative religion back when I was 10 or so, from a 1927 2-volume tome on religions of the world:

This is volume one, titled “Primitive and cultural religions, Islam and Buddhism”. As with the Watson textbook, the images in this blog entry are of my own making, done just moments ago using my phone camera, of the actual books I have in my personal library.

Again, reading this book did not make me an instant expert. But it did give me enough background to spot the flood of bullshit that permeated the discussion after the 9/11 terror attacks.

Coming from a family and personal tradition that values learning, values impartial knowledge, it almost feels like physical pain, being confronted with such gross ignorance and outright lies each and every day. Enough already. Don’t listen to me, but don’t listen to the bullshit artists either. Listen to the actual experts (and not a cherry-picked subset of so-called experts who say what you want to hear). That’s what experts are for in an advanced scientific-technological society in which no human can be a master of all trades, and in which we rely on each other’s knowledge and experience.

Someone on Quora recently compared the anti-vaxxer movement to a hypothetical scenario on an airliner in distress: instead of following the crews’ instructions and donning oxygen masks, passengers stage a revolt, led by an “expert” who already knows better than the pilots how to fly the damn plane because he played with Microsoft Flight Simulator!

Groan.

 Posted by at 1:10 am
Sep 282021
 

I live in a condominium townhouse. We’ve been living here for 25 years. We like the place.

Our unit, in particular, is the middle unit in a three-unit block. The construction is reasonably sound: proper foundations, cinderblock firewalls between the units, woodframe construction within, pretty run-of-the-mill by early 1980s North American standards. We have no major complaints.

Except that… for the past several years, every so often the house wobbled a bit. Almost imperceptibly, but still. At first, I thought it was a minor earthquake (not uncommon in this region because it is still subject to isostatic rebound from the last ice age; in fact we did live through a couple of notable earthquakes since we moved in here.) But no, it was no earthquake.

I thought perhaps it was related to the downtown light rail tunnel construction? But no, the LRT tunnels are quite some ways from here and in any case, that part of the construction has been finished long ago.

But then what the bleep is it? Could I be just imagining things?

Our phones have very sensitive acceleration sensors. Not for the first time, I managed to capture one of these events. A little earlier this afternoon, I heard the woodframe audibly creak as the house began to move again. I grabbed my phone and turned on a piece of software that samples the acceleration sensor at a reasonably high rate, about 200 times a second. Here is the result of the first few seconds of sampling:

The sinusoidal signal is unmistakably there, confirmed by a quick Fourier-analysis to be a signal just above 3 Hz in frequency:

Like Sheldon Cooper in The Big Bang Theory, I can claim that no, I am not crazy, and in this case not because my mother had me tested but because my phone’s acceleration sensor confirms my perception: Something indeed wobbles the house a little, enough to register on my phone’s acceleration sensor, measuring a peak-to-peak amplitude of roughly 0.05 m/s² (the vertical axis in the first graph is in g-units.) That wobble is certainly not enough to cause damage, but it is, I admit, a bit unnerving.

So what is going on here? A neighbor engaging in some, ahem, vigorous activity? Our current neighbors are somewhat noisier than prior residents, occasionally training their respective herds of pygmy elephants to run up and down the stairs (or whatever it is that they are doing). But no, the events are just too brief in duration and too regular. Underground work, perhaps a secret hideout for the staff of the nearby Chinese embassy? Speaking of which, I admit I even thought that this ~3 Hz signal might be related to the reported cases of illness by embassy staff at several embassies around the world, but I just don’t see the connection: even if those cases are real and have an underlying common cause (as opposed to just mere random coincidences) it’s hard to see how a 3 Hz vibration can have anything to do with them.

OK, so I have a pretty good idea of what this thing isn’t, but then, what the bleepety-bleep is it?

 Posted by at 3:50 pm
Aug 142021
 

I am not happy admitting it, but it’s true: There have been a few occasions in my life when I reacted just like this XKCD cartoon character when I first encountered specific areas of research.

 Posted by at 11:48 am
Jul 302021
 

On my eighth birthday, I received a gift from a nice couple, friends of my Mom.

It was a Hungarian-language book bearing the title, “Wonders of the World,” in Hungarian, translated from the German original that was written by German-Jewish authors Artur Fürst and Alexander Moszkowski.

It was an old book, published in the 1930s. A dark green hardcover, with the etched image of a skyscraper for illustration on the cover. Its dust jacket, if it ever had one, was long gone.

But never mind that, it’s the content on these yellowed pages that matters.

It was from this book that I first learned about statistical fallacies, for instance. What is the probability that when you leave your home, the first 200 people you encounter are all males? Astronomically small, you might conclude. 2−200 ~ 6.223 × 10−61 to be a bit more precise, assuming half the population is male. A probability this small is firmly in the category of never happens. Until one morning, you step outside and the first thing you see is an all-male battalion of soldiers marching down the street…

I was reminded of this book today as I was reading about recent pronouncements of “breakthrough” infections among the vaccinated, and the reminder by experts that in a population that has a high vaccination rate, such cases are to be expected. It does not mean that the vaccine is worthless. It simply means that as the virus runs out of unvaccinated victims, to the extent it can still cause damage, increasingly it will be among the vaccinated folks. Which should make sense, except, as we well know, roughly 90% of statistical fallacies are committed by right-handed people…

Anyhow, much to my surprise, this book I love so much, from which I learned so much as a pre-teen, remains well-known in the country where it was originally published under the title Das Buch der 1000 Wunder. So well-known, in fact, that current German-language editions are readily available on Amazon, nearly a century after its initial publication. So I guess I am not the only person who finds the insights and information presented in this unassuming volume immensely valuable, especially for a child.

So let this serve as my notice of gratitude across time and space to “uncle Sandor and aunt Eva,” as they inscribed their names in the book along with their birthday wishes, for what I can now truly call a gift of a lifetime.

 Posted by at 11:32 pm
Jul 242021
 

Can you guess the author with the most physics books on what I call my “primary” bookshelf, the shelf right over my desk where I keep the books that I use the most often?

It would be Steven Weinberg. His 1972 Gravitation and Cosmology remains one of the best books ever on relativity theory, working out details in ways no other book does. His 2010 Cosmology remains a reasonably up-to-date textbook on modern cosmology. And then there is of course the 3-volume Quantum Theory of Fields.

Alas, Weinberg is no longer with us. He passed away yesterday, July 23, at the age of 88.

He will be missed.

 Posted by at 6:27 pm
Jul 142021
 

The other day, someone asked a question: Can the itensor package in Maxima calculate the Laplace-Beltrami operator applied to a scalar field in the presence of torsion?

Well, it can. But I was very happy to get this question because it allowed me to uncover some long-standing, subtle bugs in the package that prevented some essential simplifications and in some cases, even produced nonsensical results.

With these fixes, Maxima now produces a beautiful result, as evidenced by this nice newly created demo, which I am about to add to the package:

(%i1) if get('itensor,'version) = false then load(itensor)
(%i2) "First, we set up the basic properties of the system"
(%i3) imetric(g)
(%i4) "Demo is faster in 3D but works for other values of dim, too" 
(%i5) dim:3
(%i6) "We declare symmetries of the metric and other symbols"
(%i7) decsym(g,2,0,[sym(all)],[])
(%i8) decsym(g,0,2,[],[sym(all)])
(%i9) components(g([a],[b]),kdelta([a],[b]))
(%i10) decsym(levi_civita,0,dim,[],[anti(all)])
(%i11) decsym(itr,2,1,[anti(all)],[])
(%i12) "It is useful to set icounter to avoid indexing conflicts"
(%i13) icounter:100
(%i14) "We choose the appropriate convention for exterior algebra"
(%i15) igeowedge_flag:true
(%i16) "Now let us calculate the Laplacian of a scalar field and simplify"
(%i17) canform(hodge(extdiff(hodge(extdiff(f([],[]))))))
(%i18) contract(expand(lc2kdt(%)))
(%i19) ev(%,kdelta)
(%i20) D1:ishow(canform(%))
                  %1 %2  %3 %4                 %1 %2            %1 %2
(%t20)   (- f    g      g      g     ) + f    g      + f       g
             ,%4  ,%3           %1 %2     ,%2  ,%1      ,%1 %2
(%i21) "We can re-express the result using Christoffel symbols, too"
(%i22) ishow(canform(conmetderiv(D1,g)))
               %1 %4  %2 %5      %3                   %1 %2      %3
(%t22) 2 f    g      g      ichr2      g      - f    g      ichr2
          ,%5                    %1 %2  %3 %4    ,%3             %1 %2
                                              %1 %3      %2               %1 %2
                                      - f    g      ichr2      + f       g
                                         ,%3             %1 %2    ,%1 %2
(%i23) "Nice. Now let us repeat the same calculation with torsion"
(%i24) itorsion_flag:true
(%i25) canform(hodge(extdiff(hodge(extdiff(f([],[]))))))
(%i26) "Additional simplifications are now needed"
(%i27) contract(expand(lc2kdt(%th(2))))
(%i28) ev(%,kdelta)
(%i29) canform(%)
(%i30) ev(%,ichr2)
(%i31) ev(%,ikt2)
(%i32) ev(%,ikt1)
(%i33) ev(%,g)
(%i34) ev(%,ichr1)
(%i35) contract(rename(expand(canform(%))))
(%i36) flipflag:not flipflag
(%i37) D2:ishow(canform(%th(2)))
                %1 %2  %3 %4                 %1 %2    %3            %1 %2
(%t37) (- f    g      g      g     ) + f    g      itr      + f    g
           ,%1         ,%2    %3 %4     ,%1           %2 %3    ,%1  ,%2
                                                                          %1 %2
                                                               + f       g
                                                                  ,%1 %2
(%i38) "Another clean result; can also be expressed using Christoffel symbols"
(%i39) ishow(canform(conmetderiv(D2,g)))
               %1 %2  %3 %4      %5                   %1 %2    %3
(%t39) 2 f    g      g      ichr2      g      + f    g      itr
          ,%1                    %2 %3  %4 %5    ,%1           %2 %3
                     %1 %2      %3            %2 %3      %1               %1 %2
             - f    g      ichr2      - f    g      ichr2      + f       g
                ,%1             %2 %3    ,%1             %2 %3    ,%1 %2
(%i40) "Finally, we see that the two results differ only by torsion"
(%i41) ishow(canform(D2-D1))
                                   %1 %2    %3
(%t41)                       f    g      itr
                              ,%1           %2 %3
(%i42) "Last but not least, d^2 is not nilpotent in the presence of torsion"
(%i43) extdiff(extdiff(f([],[])))
(%i44) ev(%,icc2,ikt2,ikt1)
(%i45) canform(%)
(%i46) ev(%,g)
(%i47) ishow(contract(%))
                                       %3
(%t47)                         f    itr
                                ,%3    %275 %277
(%i48) "Reminder: when dim = 2n, the Laplacian is -1 times these results."

The learning curve is steep and there are many pitfalls, but itensor remains an immensely powerful package.

 Posted by at 3:51 pm
Jun 292021
 

Temperatures like this just do not exist in Canada.

When you hear that the temperature was within a hair’s breadth of 50 degrees centigrade (well over 120 F) you’d think I am talking about a spot in the Sahara Desert. Or maybe the Australian Outback. Or Death Valley.

But no, this temperature was measured earlier today in Lytton, British Columbia, Canada.

It is surreal. Scary. And deadly: apparently, dozen’s of mostly older people succumbed to this heat wave in BC.

 Posted by at 10:33 pm
May 182021
 

We have a new manuscript on arXiv. Its title might raise some eyebrows: Algebraic wave-optical description of a quadrupole gravitational lens.

Say what? Algebra? Wave optics? Yes. It means that in this particular case, namely a gravitational lens that is described as a gravitational monopole with a quadrupole correction, we were able to find a closed form description that does not rely on numerical integration, especially no numerical integration of a rapidly oscillating function.

Key to this solution is a quartic equation. Quartic equations were first solved algebraically back in the 16th century by Italian mathematicians. The formal solution is usually considered to be of little practical value, as it entails cumbersome algebra, and polynomial equations can be routinely and efficiently solved using numerical methods.

But in this case… The amazing thing is that the algebraic solution reveals so much about the physics itself!

Take this figure from our paper, for instance:

On the left is light projected by the gravitational lens, its so-called point-spread function (PSF) which tells us how light from a point source is distributed on an imaginary projection screen by the lens. On the right? Why, that’s the discriminant of the quartic equation

$$ x^4-2\eta\sin\mu \, x^3+\big(\eta^2-1\big)x^2+\eta\sin\mu \, x+{\textstyle\frac{1}{4}}\sin^2\mu=0, $$

in a plane characterized by polar coordinates \((\eta,\tfrac{1}{2}\mu)\), that is, \(\eta\) as a radial coordinate and \(\tfrac{1}{2}\mu \) as an azimuthal angle. When the discriminant is positive, the equation is expected to have four real (or four complex) roots; everywhere else, it’s a mix of real and imaginary roots. This direct connection between the algebra and the lensing phenomenon is unexpected and beautiful.

The full set of real roots of this equation can be shown in the form of an animation:

Of course one must read the paper in order for this animation to make sense, but I think it’s beautiful.

How good is this quartic solution? It is uncannily accurate. Here is a comparison of the PSF computed using the quartic solution and also using numerical integration, as well as some enlarged details from the so-called caustic boundary:

It’s only in the immediate vicinity of the caustic boundary that the quartic solution becomes less than accurate.

We can also use the quartic solution to simulate images seen through a telescope (i.e., the Einstein ring, or what survives of it, that would appear around a gravitational lens when we looked at the lens through a telescope with a point source of light situated behind the lens.) We can see again that it’s only in the vicinity of the caustic boundary that the quartic solution produces artifacts instead of accurately reproducing it when spots of light widen into arcs:

This paper was so much joy to write! Also, for the first time in my life, this paper gave us a legitimate, non-pretentious reason to cite something from the 16th century: Cardano’s 1545 treatise in which the quartic solution (as well as the cubic) are introduced, together with discussion on the meaning of taking the square root of negative numbers.

 Posted by at 5:35 pm
May 132021
 

Last fall, I received an intriguing request: I was asked to respond to an article on the topic of dark matter in an online publication that, I admit, I never heard of previously: Inference: International Review of Science.

But when I looked, I saw that the article in question was written by a scientist with impressive and impeccable credentials (Jean-Pierre Luminet, Director of Research at the CNRS Astrophysics Laboratory in Marseille and the Paris Observatory), and other contributors of the magazine included well-known personalities like Lawrence Krauss or Noam Chomsky.

More importantly, the article in question presented an opportunity to write a response that was not critical but constructive: inform the reader that the concept of modified gravity goes far beyond the so-called MOND paradigm, that it is a rich and vibrant field of theoretical research, and that until and unless dark matter is actually discovered, it remains a worthy pursuit. My goal was not self-promotion: I did not even mention my ongoing collaboration with John Moffat on his modified theory of gravity, MOG/STVG. Rather, it was simply to help dispel the prevailing myth that failures of MOND automatically translate into failures of all efforts to create a viable modified theory of gravitation.

I sent my reply and promptly forgot all about it until last month, when I received another e-mail from this publication: a thank you note letting me know that my reply would be published in the upcoming issue.

And indeed it was, as I was just informed earlier today: My Letter to the Editor, On Modified Gravity.

I am glad in particular that it was so well received by the author of the original article on dark matter.

 Posted by at 4:38 pm
Apr 192021
 

This morning, a drone took flight. It successfully took off from the ground, hovered for a few seconds, and then landed safely.

What, you ask? How is this supposed to be a big deal? There are millions of drones out there, kids playing with them and whatnot.

Oh, but this drone is special, and not only because it carries a small piece of fabric from the Wright brothers’ very first airplane.

It is special because it flew on Mars.

 Posted by at 11:42 am